

Calculation Policy

Addition						
Skill	Year	Representat	tion and models			
Add two 1-digit numbers to 10	1	Part-whole model	Ten frames (within 10)			
		Bar model	Bead strings			
		Number shapes	Number tracks			
Add 1 and 2-digit numbers to 20	1	Part-whole model	Bead strings (20)			
		Bar model	Number tracks			
		Number shapes	Number lines (labelled)			
		Ten frames (within 20)	Straws			
Add three 1-digit numbers	2	Part-whole model	Ten frames (within 20)			
		Bar model	Number shapes			
Add 1 and 2-digit numbers to 100	2	Part-whole model	Number lines (blank)			
-		Bar model	Straws			
		Number lines (labelled)	Hundred square			
Add two 2-digit numbers	2	Part-whole model	Base 10			
		Bar model	Place value counters			
		Number lines (blank)	Straws			
Add with up to 3-digits	3	Part-whole model	Base 10			
		Bar model	Place value counters			
		Column addition				
Add with up to 4-digits	4	Part-whole model	Base 10			
		Bar model	Place value counters			
		Column addition				
Add with more than 4 digits	5	Part-whole model	Place value counters			
-		Bar model	Column addition			
Add with up to 3 decimal places	5	Part-whole model	Place value counters			
· ·		Bar model	Column addition			

	Concrete	Pictorial	Abstract
Regrouping to make 10	Start with the bigger number and use the smaller number to make 10. Bead strings or 10 frames and objects can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3. $\bullet \bullet $	Use pictures or a number line. Regroup or partition the smaller number to make 10. 6+5=11 4 1 +4 $+16$ 10 11	Bridging through ten can help children become more efficient. 37 + 15 = 52 +10 $+3$ $+237$ 47 50 52
Adding 3 single digit	4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7. Image:	Add together three groups of objects. Draw a picture to recombine the groups to make 10. + + + + + + + + + + + + + + + + + + +	Combine the two numbers that make 10 and then add on the remainder. 4 + 7 + 6 = 10 + 7 $= 17$

	Conci	rete	Pi	ictorial		Abstract
Column, no regrouping	Add together the ones tens. Use the Base 10 b moving onto place value 24 + 15 = Tens Ones 30 9	olocks first before	After practically using t value counters, children them to solve additions. 33 + 26 = Tens Ones III °°, III °°, 50 9		Children use informal pencil and paper methods (jottings) to support, record and explain partial mental methods building on existing mental strategies. They begin to use an expanded layout that underpins the standard written method. $85 = 80 + 5$ $+ \frac{46}{120 + 11} = 131$	
Column with regrouping	Make both numbers on this example is complete counters. Hundreds Tens Ones Tens Ones	146 Add + 527 nits and exchange 10 ones Hundreds Tens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. Once drawn, the children group any serie greater than ten. They s counters before adding exchange in the previous	should circle ten of onto the next colum	the	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

National Curriculum	Addition an				_			
Guidance	789 + 642	becc	omes	874 – 523	3 be	comes	932 – 457 becomes	932 – 457 becomes
Guidance	7 + 6 1 4	4	9 2 1	8 - 5 3	7 2 5	4 3 1	$ \begin{array}{r} 8 & 12 & 1 \\ 9 & 3 & 2 \\ - & 4 & 5 & 7 \\ \hline & 4 & 7 & 5 \\ \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	Answei	r: 14	31	Ansv	ver:	351	Answer: 475	Answer: 475

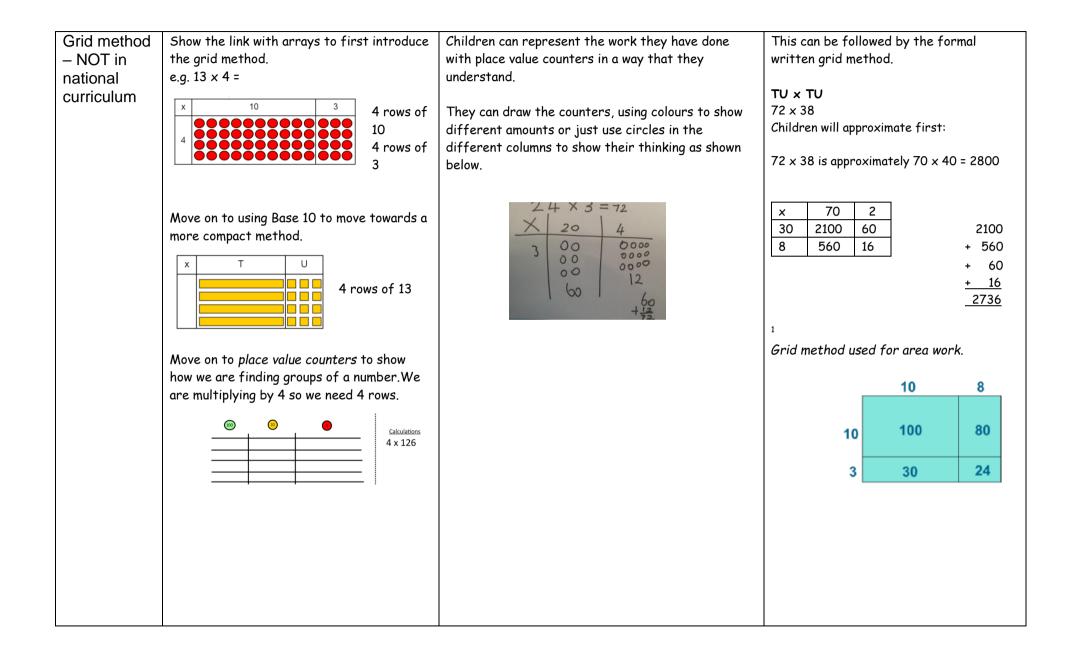
Subtraction							
Skill	Year	Representation and models					
Subtract two 1-digit numbers to 10	1	Part-whole model	Ten frames (within 10)				
		Bar model	Bead strings				
		Number shapes	Number tracks				
Subtract 1 and 2-digit numbers to 20	1	Part-whole model	Bead strings (20)				
-		Bar model	Number tracks				
		Number shapes	Number lines (labelled)				
		Ten frames (within 20)	Straws				
Subtract 1 and 2-digit numbers to 100	2	Part-whole model	Number lines (blank)				
-		Bar model	Straws				
		Number lines (labelled)	Hundred square				
Subtract two 2-digit numbers	2	Part-whole model	Base 10				
-		Bar model	Place value counters				
		Number lines (blank)					
		Straws					
Subtract with up to 3-digits	3	Part-whole model	Base 10				
		Bar model	Place value counters				
		Column subtraction					
Subtract with up to 4-digits	4	Part-whole model	Base 10				
		Bar model	Place value counters				
		Column subtraction					
Subtract with more than 4 digits	5	Part-whole model	Place value counters				
2		Bar model	Column subtraction				
Subtract with up to 3 decimal places	5	Part-whole model	Place value counters				
	_	Bar model	Column subtraction				

	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc., to show how objects can be taken away.	Cross out drawn objects to show what has been taken	18 - 3 = 15 8 - 2 = 6
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13 - 4 = 11 Use counters and move them away from the group as you take them away counting backwards as you go.	Children to also use number lines to count back. 10 and 4 less 34 + 5 + 6 + 7 + 8 + 9 + 10 Start at the bigger number and count back the smaller number showing the jumps on the number line. 34 + 35 + 36 + 37 + 47 + 57 This can progress all the way to counting back using two 2 digit numbers. Then helping children to become more efficient by subtracting the units in one jump (by using the known fact 7 - 3 = 4). Subtracting the tens in one jump and the units in one jump. Bridging through ten can help children become more efficient. 42 - 25 = 173 -3 - 2 - 20 17 + 20 + 22 + 42	18 - 3 = 15 8 - 2 = 6

Counting	Compare amounts and objects to find the difference.	Using a number line to count on.	18 - 3 = 15
on – finding the difference	difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference. S Pendls S Pendls S Pendls A teddy costs 50p and doll costs 20p. How much more does the teddy cost?	4 cm + 6 cm + 11 - 5 = 6 When dealing with larger numbers, the number line should still show 0 so children can cross out the section from 0 to the smallest number. They then associate this method with 'taking away'. +1 +1 +1 +10 +10 +10 +1 +1 +1 + 10 +10 +	8 - 2 = 6
Part part whole	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part?	Use a pictorial representation of objects to show the part-part whole model.	Move to using numerals within the part whole model.

	10 - 6 = ?		
Subtrac	tion		
	Concrete	Pictorial	Abstract
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9. 14 - 5 = 9	Using a numberline whilst partitioning the number you re subtracting. Start at 22. Take away 2 to reach 20. Then take away the remaining 3 so you have taken away 5 altogether. You have reached your answer. 22 - 5 = 17 3 2 -3 -2 3 2 -3 -2 22	16 - 8 = How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Always write the calculation alongside, as seen in the example below. 37 - 13 =	Draw the Base 10 or place value counters alongside the written calculation to help to show working. $ \frac{100000}{100000000000000000000000000000$	Initially, the children will be taught using examples that do not need the children to exchange. Partitioning and decomposition. e.g. 89 = 80 + 9 -57 - 50 + 7 30 + 2 = 32 This will eventually lead to:

	Show how you pa numbers to subt Again make the l number first.	ract.		36-14=22 T U	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					32 -12 20
Column method with rearouping	Use Base 10 to s place value count before moving or	ters. Sto	art wit	h one e	xchange		n away by cr	ossing the c	prid and show what ounters out as well nake.	Partitioning and decomposition Children can start their formal written method by partitioning the
regrouping before moving a exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need t exchange one or			Tens	Ones	Calculation 234 <u>- 88</u> 	Hundreds	Tens Π 11 χ+ λγ λ χ 120 70 50 ent, children	Ones ■ù+↓↓↓ 6 5 1 can find the	Calculation ⁵ 626 <u>- 275</u> <u>3</u> 51	number into clear place value columns. 754 = <u>- 86</u> H T O Step 1 700 + 50 + 4 - <u>80 + 6</u> H T O Step 2 700 + 40 + 14 (exchange T-O) - <u>80 + 6</u>
	the tens for ten Now I can subtro Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten	Act the	ones. <mark>eds Ten</mark>	ns One:	234	record the ex Just writing t child understa exchange/reg	he numbers ands the met	as shown hei	s=24 Step 3 10 1111 10 2277 = 24 11	H T O Step 3 $600 + 140 + 14$ (exchange H-T) - 80 + 6 600 + 60 + 8 = 668 This would be recorded by the children as 600 = 140

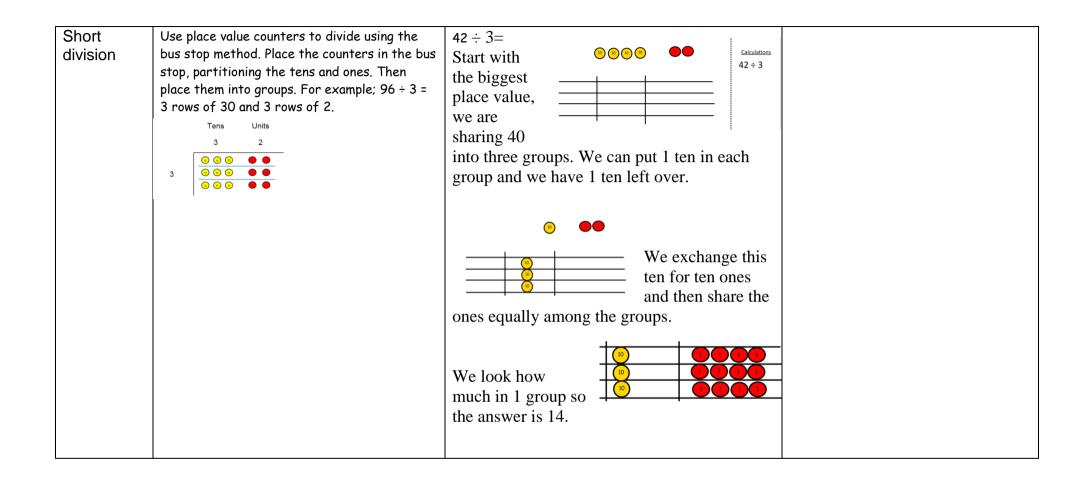

	tens. Nov away eigh complete subtract Show the methods to gather understa	nt tens the ion. e writte beside	and en	dreds Tens	$ \begin{array}{c c} $	close	together	bers are involved in the calculation are or near to multiples of 10, 100 etc., ng a number line should be used. +2 997 2000 3000 3002	$-\frac{760 + 50 + 14}{-80 + 6}$ $-\frac{80 + 6}{600 + 60 + 8} = 668$ Decomposition When children are secure with the previous method they move on to decomposition. $-\frac{6141}{794}$ $-\frac{86}{668}$	
National Curriculum Guidance	Additie 789 +			o btracti Smes	on 874 – 52	3 be	comes	932 – 457 becomes	932 – 457 becomes	
Guidance	+	7 6	8 4	9 2	8 - 5 	2	4 3	⁸ 12 1 9 3 2 - 4 5 7	9 3 2 - 4 5 7 5 6	
		4	3	1	3	5	1	4 7 5	4 7 5	
	Ar	Iswei	r: 14	31	Ansv	wer:	351	Answer: 475	Answer: 475	

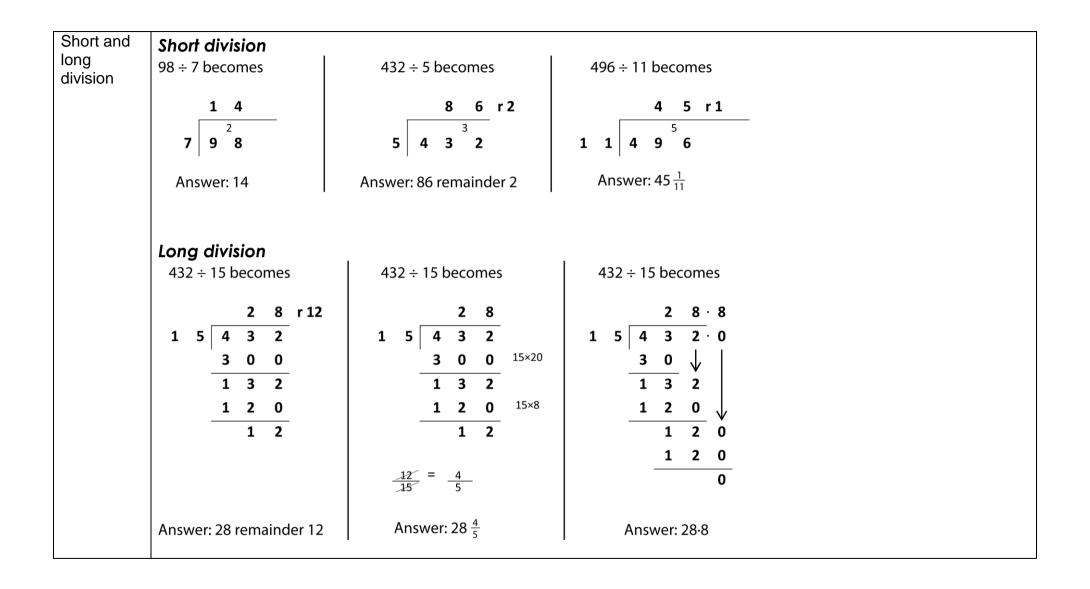
Multiplication				
Skill (times table facts)	Year	Representation and models		
Recall and use multiplication and division facts	2	Bar model	Ten frames	
for the 2-, 5- and 10-times table		Number shapes Counters	Bead strings Number lines	
		Money	Everyday objects	
Recall and use multiplication and division facts	3	Hundred square	Bead strings	
for the 3- and 4-times table		Number shapes	Number lines	
		Counters	Everyday objects	
Recall and use multiplication and division facts	3	Hundred square	Bead strings	
for the 8-times table		Number shapes	Number tracks	
		Everyday objects		
Recall and use multiplication and division facts	4	Hundred square	Bead strings	
for the 6-times table		Number shapes	Number tracks	
		Everyday objects		
Recall and use multiplication and division facts	4	Hundred square	Bead strings	
for the 7-times table		Number shapes	Number lines	
Recall and use multiplication and division facts	4	Hundred square	Bead strings	
for the 9-times table		Number shapes	Number lines	
Recall and use multiplication and division facts	4	Hundred square	Place value counters	
for the 11-times table		Base 10	Number lines	
Recall and use multiplication and division facts	4	Hundred square	Place value counters	
for the 12-times table		Base 10	Number lines	

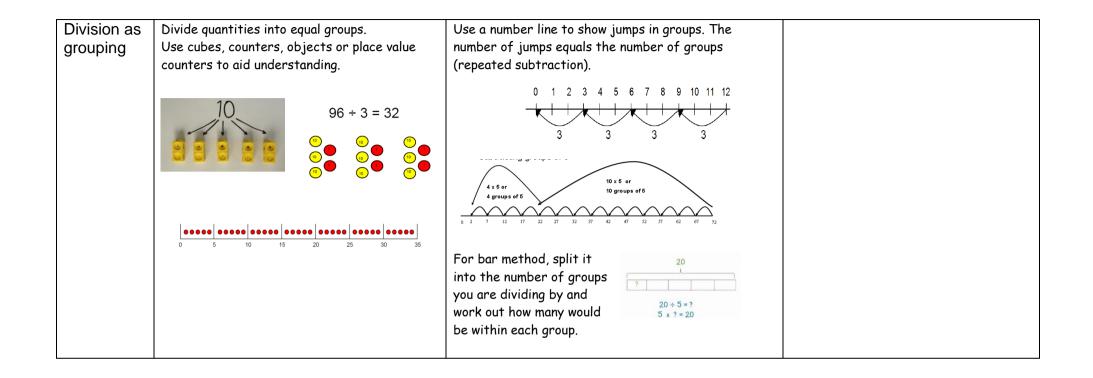
Multiplication							
Skill	Year	Representation and models					
Solve one-step problems with multiplication	1/2	Bar model Number shapes Counters	Ten frames Bead strings Number lines				
Multiply 2-digit by 1-digit numbers	3/4	Place value counters Base 10	Short written method Expanded written method				
Multiply 3-digit by 1-digit numbers	4	Place value counters Base 10	Short written method				
Multiply 4-digit by 1-digit numbers	5	Place value counters Base 10	Short written method				
Multiply 2-digit by 2-digit numbers	5	Place value counters Base 10	Short written method Grid method				
Multiply 2-digit by 3-digit numbers	5	Place value counters Grid method	Short written method				
Multiply 2-digit by 4-digit numbers	5/6	Formal written method					

	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2 = 8$	Draw pictures to show how to double a number. Double · 8	Partition a number and then double each part before recombining it back together. 16 10 10 10 10 10 10 10 10
Counting in multiples	Count in multiples supported by concrete objects in equal groups (commutativity).	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30
	3 x 5 = 5 + 5 + 5	0 5 10 15 20 25 30	

Repeated addition	Use different objects to add equal groups. $\begin{array}{c} & \end{array}$	Children will develop their understanding of multiplication and use jottings to support calculation: Repeated addition can be shown easily on a number line: $5 \times 3 = 3+3+3+3+3$ (5 lots of 3) 3 3 3 3 3 3 301 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Using symbols to stand for unknown numbers to complete equations using inverse operations □ x 5 = 20 3 x △ = 18 □ x O = 32
Arrays – Showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Children should be able to model a multiplication calculation using an array. Arrays can be drawn in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition. e.g. 5+5+5=15 3+3+3+3+3= 15 5×3=15 3×5=15




	Fill four rows with 126.	A x 126		
Column multiplication	exchanges (see addition sec Short multiplication			
	24 × 6 becomes	342×7 becomes	2741 × 6 becomes	
	24	3 4 2	2 7 4 1	
	24 × 6	342 × 7	2 7 4 1 × 6	
	× 6	× 7	× 6	


Long multiplication			
24 × 16 becomes	124 × 26 becomes	124 × 26 becomes	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 1 2 4 × 2 6 2 4 8 0 7 4 4 3 2 2 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Answer: 384	Answer: 3224	Answer: 3224	

Division			
Skill	Year	Representation and models	
Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	1/2	Real life objects Number shapes Bead strings Counters Ten frames	Number lines Arrays
Divide 2-digits by 1-digit (no exchange/regrouping - sharing structure)	3	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1-digit (sharing with exchange/regrouping)	3	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1-digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1-digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1-digit (sharing with exchange/regrouping)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1-digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division
Divide 4-digits by 1-digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written short division	List of multiples

Division			
	Concrete	Pictorial	Abstract
Sharing into groups	Children will understand equal groups and share items out in play and problem solving. e.g., 6 ÷ 3 =	Children will develop their understanding of division and use jottings to support calculation. e.g., $6 \div 2 =$ $20 \div 4 =$	Share 9 buns between three people. 9 ÷ 3 = 3 Using symbols to stand for unknown numbers to complete equations using inverse operations 0 ÷ 2 = 4 20 ÷ 0 = 4 1 ÷ 0 = 4 1 ÷ 0 = 4
Division with a remainder	Divide objects between groups and see how much is left over. E.g. 14 ÷ 3 = 4 remainder 2.	Children may use an empty number line to support their calculation. Children should also move onto calculations involving remainders. 13 ÷ 4 = 3 r 1 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	Complete written divisions and show the remainder using r. 32 ÷ 5 = 6r2

